000 02203nam a22003017a 4500
003 OSt
005 20250226142402.0
008 241028b |||||||| |||| 00| 0 hin d
020 _a9781107054134
020 _a9781107664647
040 _aNISER LIBRARY
_beng
_cNISER LIBRARY
041 _aEnglish
082 _a519.23
_bMAY-S
100 _aMayo, Deborah G.
245 _aStatistical inference as severe testing :
_bhow to get beyond the statistics wars
260 _aCambridge :
_bCambridge University Press,
_c2018.
300 _axvi, 486p. :
_billustrations ;
_c23 cm
504 _aIncludes bibliographical references and index
520 _aMounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
650 _aMathematical statistics
650 _aInference
650 _aError analysis (Mathematics)
650 _aFallacies (Logic)
650 _aDeviation (Mathematics)
856 _3Table of Contents
_uhttps://assets.cambridge.org/97811070/54134/toc/9781107054134_toc.pdf
856 _3Reviews
_uhttps://www.goodreads.com/book/show/37684125-statistical-inference-as-severe-testing#CommunityReviews
942 _2udc
_cBK
999 _c35355
_d35355