000 03649cam a2200517Ia 4500
001 ocn316569215
003 OCoLC
005 20141103172224.0
006 m o d
007 cr cn|||||||||
008 090320s1988 ne ob 000 0 eng d
040 _aOPELS
_beng
_cOPELS
_dOPELS
_dOCLCQ
_dOCLCF
_dOCLCO
_dDEBBG
020 _a9780444705211
020 _a044470521X
029 1 _aAU@
_b000048130094
029 1 _aDEBBG
_bBV039834558
029 1 _aNZ1
_b15193374
029 1 _aDEBBG
_bBV036962835
029 1 _aDEBSZ
_b407394524
035 _a(OCoLC)316569215
037 _a119855:122790
_bElsevier Science & Technology
_nhttp://www.sciencedirect.com
050 4 _aQA329
_b.B44 1988eb
082 0 4 _a515.7/24
_222
049 _aTEFA
100 1 _aBeauzamy, Bernard,
_d1949-
245 1 0 _aIntroduction to operator theory and invariant subspaces
_h[electronic resource] /
_cBernard Beauzamy.
260 _aAmsterdam ;
_aNew York :
_bNorth-Holland ;
_aNew York, N.Y., U.S.A. :
_bSole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.,
_c1988.
300 _a1 online resource (xiv, 358 p.)
490 1 _aNorth-Holland mathematical library ;
_vv. 42
520 _aThis monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given. Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples. In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.
504 _aIncludes bibliographical references (p. [351]-358).
588 _aDescription based on print version record.
650 0 _aOperator theory.
650 0 _aInvariant subspaces.
650 7 _aOp�erateurs, Th�eorie des.
_2ram
650 7 _aSous-espaces invariants.
_2ram
650 7 _aInvariant subspaces.
_2fast
_0(OCoLC)fst00977981
650 7 _aOperator theory.
_2fast
_0(OCoLC)fst01046419
655 4 _aElectronic books.
776 0 8 _iPrint version:
_aBeauzamy, Bernard, 1949-
_tIntroduction to operator theory and invariant subspaces.
_dAmsterdam ; New York : North-Holland ; New York, N.Y., U.S.A. : Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., 1988
_z044470521X
_z9780444705211
_w(DLC) 88025064
_w(OCoLC)18351950
830 0 _aNorth-Holland mathematical library ;
_vv. 42.
856 4 0 _3ScienceDirect
_uhttp://www.sciencedirect.com/science/book/9780444705211
856 4 _uhttp://www.sciencedirect.com/science/publication?issn=09246509&volume=42
_3Volltext
942 _cEB
994 _aC0
_bTEF
999 _c21753
_d21753