opac header image
Image from Google Jackets
Image from Coce

Miles of tiles

By: Radin, CharlesMaterial type: TextTextSeries: Student mathematical library ; v. 1Publication details: India : Universities Press, 2025. Description: xii, 120 p. ; 22 cmISBN: 9789349750562Subject(s): Tiling (Mathematics)DDC classification: 514.174 Online resources: Table of Contents | Reviews Summary: The common thread throughout this book is aperiodic tilings; the best-known example is the “kite and dart” tiling. This tiling has been widely discussed, particularly since 1984 when it was adopted to model quasicrystals. The presentation uses many different areas of mathematics and physics to analyze the new features of such tilings. Although many people are aware of the existence of aperiodic tilings, and maybe even their origin in a question in logic, not everyone is familiar with their subtleties and the underlying rich mathematical theory. For the interested reader, this book fills that gap. Understanding this new type of tiling requires an unusual variety of specialties, including ergodic theory, functional analysis, group theory and ring theory from mathematics, and statistical mechanics and wave diffraction from physics. This interdisciplinary approach also leads to new mathematics seemingly unrelated to the tilings. Included are many worked examples and a large number of figures. The book's multidisciplinary approach and extensive use of illustrations make it useful for a broad mathematical audience.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
NBHM Books NBHM Books SMS Library
514.174 RAD-M (Browse shelf(Opens below)) Available N490

Includes bibliographical references (p. 113-115) and index.

The common thread throughout this book is aperiodic tilings; the best-known example is the “kite and dart” tiling. This tiling has been widely discussed, particularly since 1984 when it was adopted to model quasicrystals. The presentation uses many different areas of mathematics and physics to analyze the new features of such tilings. Although many people are aware of the existence of aperiodic tilings, and maybe even their origin in a question in logic, not everyone is familiar with their subtleties and the underlying rich mathematical theory. For the interested reader, this book fills that gap.

Understanding this new type of tiling requires an unusual variety of specialties, including ergodic theory, functional analysis, group theory and ring theory from mathematics, and statistical mechanics and wave diffraction from physics. This interdisciplinary approach also leads to new mathematics seemingly unrelated to the tilings. Included are many worked examples and a large number of figures. The book's multidisciplinary approach and extensive use of illustrations make it useful for a broad mathematical audience.

Readership: Advanced undergraduates, graduate students, and research mathematicians.

There are no comments on this title.

to post a comment.
© 2025 Copyright: Customised and Maintained by Central Library NISER

Central Library, NISER Library Building, PO-Jatni, Khurda, Odisha - 752050, India | Email: libniser@niser.ac.in Phone: +91-674-2494171

Powered by Koha