opac header image
Image from Google Jackets
Image from Coce

Univariate stable distributions : models for heavy tailed data

By: Nolan, John PMaterial type: TextTextSeries: Springer Series in Operations Research and Financial EngineeringPublication details: Cham, Switzerland : Springer, 2020. Description: xv, 333 p. : illustrations (83 b/w illustrations, 21 illustrations in colour)ISBN: 9783030529147Subject(s): Applied mathematics | Distribution (Probability theory) | Engineering mathematics | Mathematics -- Probability & statistics -- General | Multivariate analysis | Probability theory and stochastic processes | Brownian motion | Stable laws | Univariate stable distributions | Signal processing algorithm | Pareto distributionsDDC classification: 519.25 Online resources: Table of content | Reviews Summary: This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Book Book NISER LIBRARY
519.25 NOL-U (Browse shelf(Opens below)) Available 25683

Includes bibliographical references and index.

This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.

There are no comments on this title.

to post a comment.
© 2025 Copyright: Customised and Maintained by Central Library NISER

Central Library, NISER Library Building, PO-Jatni, Khurda, Odisha - 752050, India | Email: libniser@niser.ac.in Phone: +91-674-2494171

Powered by Koha