opac header image
Image from Google Jackets
Image from Coce

Course in p-adic analysis

By: Robert, Alain MMaterial type: TextTextSeries: Graduate texts in mathematics ; 198Publication details: New York : Springer, 2000. Description: xv, 437 pages : illustrations ; 25 cmISBN: 9781071646304Subject(s): p-adic analysis | Differential equation | Functional equation | CalculusDDC classification: 511.386 Online resources: Table of contents | Reviews Summary: Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.
List(s) this item appears in: Mathematics
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
NBHM Books NBHM Books SMS Library
511.386 ROB-C (Browse shelf(Opens below)) Available N476

Includes bibliographical references (p. [423]-424) and index.

Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.

There are no comments on this title.

to post a comment.
© 2025 Copyright: Customised and Maintained by Central Library NISER

Central Library, NISER Library Building, PO-Jatni, Khurda, Odisha - 752050, India | Email: libniser@niser.ac.in Phone: +91-674-2494171

Powered by Koha