opac header image
Image from Google Jackets
Image from Coce

Machine learning : a physicist perspective

By: Bolivar, NelsonMaterial type: TextTextPublication details: Burlington : Arcler Press, 2022 Description: xxii, 242pISBN: 9781774690482Subject(s): Machine learning | Computational physicsDDC classification: 53:004.85 Online resources: Reviews Summary: Deep-learning and machine-learning have gained a significant importance in the last few years. New inventions and discoveries are taking place every day to exploit the concepts of machine-learning technique. The aim of this book is to present the fundamentals of machine-learning with an emphasis on deep-learning, neural networks and physical aspects of machine learning. Design of materials and molecules with desired features is an essential prerequisite for progressing technology in our contemporary societies. This necessitates both the capability to compute precise microscopic characteristics, such as forces, energies and efficient selection of potential energy faces, to attain corresponding macroscopic features. Tools required to achieve the above mentioned goals can be extracted from quantum mechanics, statistical mechanics, and classical physics, respectively. To overcome the challenge of technology integration, significant efforts are being made to speed up quantum physical simulations with the help of machine learning. This evolving interdisciplinary community consists of material scientists, chemists, physicists, computer scientists and mathematicians, coming together to contribute to the exciting field of machine learning and artificial intelligence. This book can be used as a reference material for acquiring fundamentals of machine learning from a physicist's perspective. Moreover, people from all backgrounds can benefit from this introductory book on Machine Learning.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Book Book NISER LIBRARY
53:004.85 BOL-M (Browse shelf(Opens below)) Available 25580

Includes bibliographical references and index.

Deep-learning and machine-learning have gained a significant importance in the last few years. New inventions and discoveries are taking place every day to exploit the concepts of machine-learning technique. The aim of this book is to present the fundamentals of machine-learning with an emphasis on deep-learning, neural networks and physical aspects of machine learning. Design of materials and molecules with desired features is an essential prerequisite for progressing technology in our contemporary societies. This necessitates both the capability to compute precise microscopic characteristics, such as forces, energies and efficient selection of potential energy faces, to attain corresponding macroscopic features. Tools required to achieve the above mentioned goals can be extracted from quantum mechanics, statistical mechanics, and classical physics, respectively. To overcome the challenge of technology integration, significant efforts are being made to speed up quantum physical simulations with the help of machine learning. This evolving interdisciplinary community consists of material scientists, chemists, physicists, computer scientists and mathematicians, coming together to contribute to the exciting field of machine learning and artificial intelligence. This book can be used as a reference material for acquiring fundamentals of machine learning from a physicist's perspective. Moreover, people from all backgrounds can benefit from this introductory book on Machine Learning.

There are no comments on this title.

to post a comment.
© 2025 Copyright: Customised and Maintained by Central Library NISER

Central Library, NISER Library Building, PO-Jatni, Khurda, Odisha - 752050, India | Email: libniser@niser.ac.in Phone: +91-674-2494171

Powered by Koha