Fundamental mathematical analysis
Material type: TextLanguage: English Series: Springer undergraduate mathematics seriesPublication details: Switzerland : Springer, 2020. Description: xx, 433pISBN: 9783030463205Subject(s): Mathematical analysis | Functions of a real variable | Foundations of analysis | Real analysisDDC classification: 517 Online resources: Table of contents | Reviews Summary: This textbook offers a comprehensive undergraduate course in real analysis in one variable. Taking the view that analysis can only be properly appreciated as a rigorous theory, the book recognises the difficulties that students experience when encountering this theory for the first time, carefully addressing them throughout. Historically, it was the precise description of real numbers and the correct definition of limit that placed analysis on a solid foundation. The book therefore begins with these crucial ideas and the fundamental notion of sequence. Infinite series are then introduced, followed by the key concept of continuity. These lay the groundwork for differential and integral calculus, which are carefully covered in the following chapters. Pointers for further study are included throughout the book, and for the more adventurous there is a selection of "nuggets", exciting topics not commonly discussed at this level. Examples of nuggets include Newton's method, the irrationality of π, Bernoulli numbers, and the Gamma function. Based on decades of teaching experience, this book is written with the undergraduate student in mind. A large number of exercises, many with hints, provide the practice necessary for learning, while the included "nuggets" provide opportunities to deepen understanding and broaden horizons.Item type | Current library | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|
Book | NISER LIBRARY | 517 MAG-F (Browse shelf(Opens below)) | Available | 25446 |
Browsing NISER LIBRARY shelves Close shelf browser (Hides shelf browser)
Includes index
This textbook offers a comprehensive undergraduate course in real analysis in one variable. Taking the view that analysis can only be properly appreciated as a rigorous theory, the book recognises the difficulties that students experience when encountering this theory for the first time, carefully addressing them throughout.
Historically, it was the precise description of real numbers and the correct definition of limit that placed analysis on a solid foundation. The book therefore begins with these crucial ideas and the fundamental notion of sequence. Infinite series are then introduced, followed by the key concept of continuity. These lay the groundwork for differential and integral calculus, which are carefully covered in the following chapters. Pointers for further study are included throughout the book, and for the more adventurous there is a selection of "nuggets", exciting topics not commonly discussed at this level. Examples of nuggets include Newton's method, the irrationality of π, Bernoulli numbers, and the Gamma function.
Based on decades of teaching experience, this book is written with the undergraduate student in mind. A large number of exercises, many with hints, provide the practice necessary for learning, while the included "nuggets" provide opportunities to deepen understanding and broaden horizons.
There are no comments on this title.