opac header image
Image from Google Jackets
Image from Coce

Tensor calculus for physics : a concise guide

By: Neuenschwander, Dwight EMaterial type: TextTextLanguage: English Publication details: Baltimore: Johns Hopkins university press, 2015 Description: xvi, 227p. PbkISBN: 9781421415659Subject(s): MATHEMATICAL PHYSICS | CALCULUS OF TENSORSDDC classification: 53:514.743.2 Summary: Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism, they encounter the "polarization tensor." However, this piecemeal approach can set students up for misconceptions when they have to learn about tensors in more advanced physics and mathematics studies (e.g., while enrolled in a graduate-level general relativity course or when studying non-Euclidean geometries in a higher mathematics class). Dwight E. Neuenschwander's Tensor Calculus for Physics is a bottom-up approach that emphasizes motivations before providing definitions. Using a clear, step-by-step approach, the book strives to embed the logic of tensors in contexts that demonstrate why that logic is worth pursuing. It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 3.5 (2 votes)
Holdings
Item type Current library Call number Status Date due Barcode
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24683
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24684
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24685
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24686
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24687
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24688
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24689
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24690
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24691
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24602
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24603
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24604
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24605
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24606
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24607
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24608
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24609
Book Book NISER LIBRARY
53:514.743.2 NEU-T (Browse shelf(Opens below)) Available 24610

Contents
Preface
Acknowledgment
Chapter 1. Tensors Need Context
Chapter 2. Two-Index Tensors
Chapter 3. The Metric Tensor
Chapter 4. Derivatives of Tensors
Chapter 5. Curvature
Chapter 6. Covariance Applications
Chapter 7. Tensors and Manifolds
Chapter 8. Getting Acquainted with Differential Forms
Appendix A: Common Coordinate Systems
Appendix B: Theorem of Alternatives
Appendix C: Abstract Vector Spaces
Bibliography
Index

Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry.

Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism, they encounter the "polarization tensor." However, this piecemeal approach can set students up for misconceptions when they have to learn about tensors in more advanced physics and mathematics studies (e.g., while enrolled in a graduate-level general relativity course or when studying non-Euclidean geometries in a higher mathematics class).

Dwight E. Neuenschwander's Tensor Calculus for Physics is a bottom-up approach that emphasizes motivations before providing definitions. Using a clear, step-by-step approach, the book strives to embed the logic of tensors in contexts that demonstrate why that logic is worth pursuing. It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.

There are no comments on this title.

to post a comment.
© 2024 Copyright: Customised and Maintained by Central Library NISER

Central Library, NISER Library Building, PO-Jatni, Khurda, Odisha - 752050, India | Email: libniser@niser.ac.in Phone: +91-674-2494171

Powered by Koha